Abstract

The selective detection of methyl benzene (e.g. toluene and xylene) using oxide semiconductor-based gas/vapor sensors is highly desirable but limited by the low chemical reactivity of the benzene compounds. Exploiting p-type semiconductor oxides (e.g., NiO) which provide distinctive catalytic activities for methyl benzene detection is an essential approach. However, the intrinsic responses of p-type semiconductor oxides are often low. In this paper, high-performance toluene and xylene detection has been realized by a sensor based on novel p-p heterojunction NiGa2O4-NiO nanospheres. Construction of optimized p-p heterojunctions, which resulting from the rationally controlling of the NiGa2O4 content in NiGa2O4-NiO, leads to significantly promoted sensing properties for toluene and xylene detection. It is found that the sensor based on 50% NiGa2O4-NiO exhibits the best sensing performances. Its highest response (Rg/Ra = 12.7 to toluene; Rg/Ra = 16.3 to xylene) is almost 10 times higher than that of the pure NiO (Rg/Ra < 2) to 100 ppm toluene and xylene at 230 °C. More importantly, the sensor exhibits superior selectively for detection of the methyl benzene even against more reactive interfering gases/vapors, such as formaldehyde and ethanol. The p-p oxide heterojunction suggests a promising sensing material for toluene and xylene detection with high response, excellent selectivity, good stability and rapid response/recover time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.