Seawater desalination plants increase local coastal salinities by discharging concentrated brine back to the sea with ∼ 50% higher than ambient salinities. The impacts of high salinities on microbial coastal populations of the eastern Mediterranean Sea (EMS) were examined in two mesocosm experiments; first, during the mixed-spring and second, during the stratified-summer periods with average salinity of ∼ 39. Ambient salinities were increased by 5% and 15%. Higher salinity (15%) mesocosms induced rapid (within 2 h) declines in both primary productivity (PP) and algal biomass parallel to an increase in bacterial productivity. Subsequently, for the duration of the experiments (11-12 days), both Chlorophyll a and PP rates increased (2 to 5 and 1.5 to 2.5-fold, respectively) relative to unamended controls. The initial assemblages of the ambient microbial populations and intensity of salinity enrichments influenced the community responses. During the mixed-spring experiment, the composition of prokaryotic and eukaryotic populations shifted only slightly, suggesting high functional plasticity of the initial populations. While during the stratified-summer experiment, high salinity changed the composition and reduced the biodiversity of the microbial communities. In an ultra-oligotrophic environment such as the EMS, salinity induced declines in microbial diversity may provide a tipping point destabilizing the local aquatic food web.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call