Abstract

Co/ZnO and Co/ZnAlO films were prepared by depositing ultrathin cobalt layers and semiconductor layers on glass substrates at room temperature. The films consist of metallic Co particles, semiconductor matrix, and an interfacial magnetic semiconductor with the substitution of Co(2+) for Zn(2+) in the ZnO lattice at the interface between Co particles and the semiconductor matrix. Large room temperature negative tunneling magnetoresistance was observed in the films. In addition, the magnetism and magnetoresistance were obviously enhanced by adding aluminum to the ZnO, and in one Co/ZnAlO sample, the room temperature negative magnetoresistance value reaches -12.3% at 18 kOe (compared with -8.4% of the corresponding Co/ZnO film) and the spin polarization of the tunneling electrons is about 37.5% which is characteristic of metallic Co. This enhancement of the tunneling spin polarization has been ascribed to the tunneling through an interfacial magnetic semiconductor, which causes the robust spin injection from cobalt metal into the semiconductors at room temperature resulting from the spin filter effect of the interfacial magnetic semiconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.