Abstract
This study employs the sol-gel auto combustion technique fueled by diethanolamine (DEA) to synthesize nanocrystalline magnesium ferrite (MgFe2O4) powders. During the study, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–visible diffuse reflectance spectroscopy (UV-DRS), photoluminescence spectroscopy (PL), and vibrating sample magnetometry (VSM) were then used in order to determine how differing calcination temperatures influence the structure, chemical bonding, surface texture, morphology, optical, fluorescence, and magnetic properties of the resulting MgFe2O4 powders. The findings from the XRD and FT-IR analysis indicate that a single-phase spinel structure is formed in each of the MgFe2O4 samples. According to UV-DRS analysis, optimal calcination improved sample reflection levels in comparison to the visible and infrared spectral findings for the as-synthesized sample. The calcined samples exhibited bandgap energy (Eg) ranging from 2.11 eV to 2.14 eV, which was greater than the 2.02 eV of the as-synthesized sample. Examination of the PL spectra in the range of 380–700 nm revealed various light emission bands for the samples, which increased significantly in intensity at higher calcination temperatures. Furthermore, higher calcination temperatures also increased the magnetization of the MgFe2O4 spinel powders, while coercivity dropped significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.