Abstract

Slow positrons implanted into a porous silica film may efficiently form positronium (Ps) atoms that diffuse through a network of interconnected pores. At high Ps densities, the long lifetime of ortho-positronium atoms is reduced due to Ps-Ps spin dependent interactions at a rate that implies an effective free-space scattering cross section, σ(e) = (3.4 ± 0.5) × 10(-14) cm(-2), at least 25 times larger than the theoretical value. This enhanced interaction rate may be explained if the quantum confinement of Ps results in interpore tunneling rates that depend critically on the distribution of pore sizes, so that rather than uniformly sampling the porous matrix Ps diffusion is limited to a small subset of the pores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.