Abstract

In this study, the side-chain type hybrid proton exchange membranes which based on metal-organic frameworks (MOFs) and organic matrix of sulfonated poly (arylene ether ketone sulfone) containing both long and short sulfonic acid side chains (S-C-SPAEKS) were prepared. MOF-801 was used as a template and then imidazole was encapsulated into MOF-801 as additional proton carriers. In imidazole -MOF-801, imidazole was used as a functional group to coordinate with the zirconium metal site of the functional group. Imidazole-MOF-801 and hybrid membranes were characterized by XRD, 1H NMR and FT-IR. These hybrid membranes exhibited excellent proton conductivities and good thermal stabilities. Compared to pure S-C-SPAEKS (0.0487 S cm−1 at 30 °C, 0.0809 S cm−1 at 80 °C), S-C-SPAEKS/0.5% Im-MOF-801 showed a great improvement (0.1205 S cm−1 at 30 °C, 0.1992 S cm−1 at 80 °C), which was about 2.5 times higher than that of pure S-C-SPAEKS and 2 times higher than that of commercial Nafion117 (0.1003 S cm−1 at 80 °C). The results indicated that imidazole functionalized MOFs and uneven side chain structure synergistically made an important contribution to proton transport. This series of hybrid membranes have the potential to be used as alternative proton exchange membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.