Abstract

Dedifferentiated human articular chondrocytes exhibited a wide variation in their capacity to proliferate and redifferentiate in an alginate suspension culture system. The greatest extent of proliferation and redifferentiation was seen to be dependent on the formation of clonal populations of chondrocytes and correlated inversely with the initial cell seeding density. Redifferentiating chondrocytes seeded at low density (1 x 10(4) cells/ml alginate) compared with chondrocytes that were seeded at high density (1 x 10(6) cells/ml alginate) showed a nearly 3-fold higher median increase in cell number. a 19-fold greater level of type-II collagen mRNA expression, a 4-fold greater level of aggrecan mRNA expression, and a 6-fold greater level of sulfated glycosaminoglycan deposition at 4 weeks of culture. Matrix molecules from low-density cultures were assembled into chondrocyte-encapsulated, spherical extracellular matrices that were readily visualized in sections from 12-week cultures stained with antibodies against types I and II collagen and aggrecan. Ultrastructural analysis of 12-week low-density cultures confirmed the presence of thin collagen fibrils throughout the matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.