Abstract

Abstract Background Fatty acid sugar esters are non-toxic, odorless, non-irritanting surfactants. They can be synthesized by renewable resources and are completely biodegradable in aerobic and anaerobic conditions. Their application has been expanded in innumerous areas including pharmaceuticals, cosmetics, detergents and food industry. Lipase-catalyzed esterification have been investigated as a potential substitute to the traditional chemical, demanding milder reaction conditions, allowing better reaction control and providing higher-quality products. So, the lipase catalyzed sugar ester synthesis becomes an interesting strategy for producing biodegradable, non- ionic surfactants. The main disadvantage of this protocol is the poor solubility of substrates and long reaction time required for performed the esterification reaction with moderated to good yields. Results Here in, we report the enzymatic esterification of steric hindered fructose derivative with free fatty acids derived from palm oil refining process (RePO) under continuous flow conditions at concentrations up to 0.5 M, increasing the productivity up to 100 mg. min −1.g immob. enzyme −1. Conclusions The immobilized commercial enzyme from Rhizomucor miehei generated the best performance between the catalysts tested.

Highlights

  • Fatty acid sugar esters are non-toxic, odorless, non-irritanting surfactants

  • These esters can be applied in innumerous areas including pharmaceuticals, cosmetics, detergents and food industry [3], because of their wide range of hydrophilic/lipophilic balance (HLB) depending on the length of the fatty acid chain and the nature of the sugar [4]

  • Despite all importance related to this class of molecules, the synthesis of fructose esters is still a challenging task

Read more

Summary

Results

We report the enzymatic esterification of steric hindered fructose derivative with free fatty acids derived from palm oil refining process (RePO) under continuous flow conditions at concentrations up to 0.5 M, increasing the productivity up to 100 mg.

Background
Results and discussion
Conclusions
Methods
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.