Abstract

Herein, we develop and investigate the performance of defect-free hollow fiber membranes (HFMs) based on a novel 6FDA-mPDA0.65-DABA0.3-TFMB0.05 copolyimide for helium separation from multi-component natural gas. The copolyimide is synthesized using a two-step condensation polymerization, and the hollow fiber membranes are fabricated using a dry-jet/wet-quench spinning approach. Thermal crosslinking of hollow fiber membranes is conducted to enhance plasticization resistance. The crosslinked membranes exhibit improved He selectivity (α(He/CH4) = 259) compared to the pristine hollow fiber membrane (α(He/CH4) = 210). Gas permeation tests are performed on the pristine and crosslinked hollow fiber membranes using pure-gas and mixed-gas at various pressures. The results demonstrate that the crosslinked membranes effectively resist plasticization even under high-pressure gas feeds containing CO2, light hydrocarbons, and heavy hydrocarbons. In contrast, the uncrosslinked membranes experience plasticization, dramatically decreasing selectivity. The findings provide valuable insights into the plasticization behavior of different impurity compounds in hollow fiber membranes and highlight the potential of thermal crosslinking as an effective strategy to improve the plasticization resistance of HFMs for He recovery. These defect-free and plasticization-resistant membranes hold promise for efficient He recovery from mixed-gas streams, offering a viable and energy-efficient alternative to traditional separation methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.