Abstract

The hydrogenated TiO2 porous nanocrystalline film is modified with CdS quantum dots by successive ionic layer adsorption and reaction (SILAR) method to prepare the cosensitized TiO2 solar cells by CdS quantum dots and hydrogenation. The structure and topography of the composite photoanode film were confirmed by X‐ray diffraction and scanning electron microscopy. With deposited CdS nanoparticles, UV absorption spectra of H:TiO2 photoanode film indicated a considerably enhanced absorption in the visible region. The cosensitized TiO2 solar cell by CdS quantum dots and hydrogenation presents much better photovoltaic properties than either CdS sensitized TiO2 solar cells or hydrogenated TiO2 solar cells, which displays enhanced photovoltaic performance with power conversion efficiency (η) of 1.99% (Jsc = 6.26 mA cm−2, Voc = 0.65 V, and FF = 0.49) under full one‐sun illumination. The reason for the enhanced photovoltaic performance of the novel cosensitized solar cell is primarily explained by studying the Nyquist spectrums, IPCE spectra, dark current, and photovoltaic performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.