Abstract

The hydrothermal approach has been used to fabricate a heterojunction of n-aluminum-doped ZnO nanorods/p-B-doped diamond (n-Al:ZnO NRs/p-BDD). It exhibits a significant increase in photoluminescence (PL) intensity and a blue shift of the UV emission peak when compared to the n-ZnO NRs/p-BDD heterojunction. The current voltage (I-V) characteristics exhibit excellent rectifying behavior with a high rectification ratio of 838 at 5 V. The n-Al:ZnO NRs/p-BDD heterojunction shows a minimum turn-on voltage (0.27 V) and reverse leakage current (0.077 μA). The forward current of the n-Al:ZnO NRs/p-BDD heterojunction is more than 1300 times than that of the n-ZnO NRs/p-BDD heterojunction at 5 V. The ideality factor and the barrier height of the Al-doped device were found to decrease. The electrical transport behavior and carrier injection process of the n-Al:ZnO NRs/p-BDD heterojunction were analyzed through the equilibrium energy band diagrams and semiconductor theoretical models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.