Abstract

We demonstrate coherent control of a quantum dot exciton using photocurrent detection with a sinusoidal reverse bias. Optical control is performed at low bias, where tunneling-limited coherence times are long. Following this step, the tunneling rates are increased to remove the long-lived hole, achieving a high photocurrent signal. For a detection efficiency of 68%, electron and hole tunneling times during optical control of 200 ps and 20 ns can be achieved, compared to 120 ps and 7 ns for the constant bias case, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.