Abstract

Photocatalytic water pollution remediation is currently a hot issue in the field of environmental protection. However, the limited optical adsorption, recombination of electrons and holes, as well as low kinetics in solid-liquid conditions impede the further improvement in photoactivity. Inspired by the degradation mechanism of photocatalytic process, started with interfacial engineering, in this paper, plasmonic metal-semiconductor heterostructures (PMSHs) combined with an optimized dissolved oxygen transporting channel were prepared. With the synergetic help of PMSHs and superhydrophilic-superhydrophobic (superwetting) reaction interface, it is not only can realize the effective capture of photons in the visible light band, but also promote the fully separation of electron-hole pairs. The efficiency in PMSHs based triphase system is ~60 times higher than traditional solid-liquid system, and is ~3 times higher than PMSHs based solid-liquid system. The stability and wide applicability in series organic dyes degradation also made it a good potential for practical pollutants water treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.