Abstract

The potassium and iodine co-doping combined with a mesoporous structure for developing a novel g-C3N4-based photocatalyst is constructed. The K and I co-doped mesoporous g-C3N4 has been successfully synthesized via the one pot thermal polymerization of a mixture consisting of dicyandiamide, KI, and SBA-15 used as the hard template. It is shown that this photocatalyst consists of short rod-like network with plenty of pores openings into their surfaces. The mesoporous structure and the doping with K and I in it have been verified by several techniques. For this photocatalyst, a blue shift of the optical absorption band edge induced by the mesoporous structure is compensated for by the red shift originated from the co-doping with K and I. This photocatalyst exhibits the longest life time of carries, the fastest charge transport, and the highest photocurrent density as compared with the mesoporous g-C3N4 and the K and I co-doped one. It is revealed a synergistic effect between the formation of the mesoporous structure and the co-doping with K and I. The synergistic effect make the K and I co-doped mesoporous g-C3N4 photocatalyst achieves a high hydrogen evolution rate of 80.58μmol/h, 9.7 times as high as that for pristine g-C3N4. These results may shed light on the integration of different modification strategies for developing novel g-C3N4-based photocatalysts with much enhanced photocatalytic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.