Abstract

An attempt has been made to enhance the photocatalytic activity of CeO(2) for visible light assisted decoloration of methylene blue (MB) dye in aqueous solutions by β-cyclodextrin (β-CD). The inclusion complexation patterns between host and guest (i.e., β-CD and MB) have been confirmed with UV-visible spectral data. The interaction between CeO(2) and β-CD has also been characterized by field emission scanning electron microscopy analysis. The photocatalytic activity of the catalyst under visible light was investigated by measuring the photodegradation of MB in aqueous solution. The effects of key operational parameters such as initial dye concentration, initial pH, CeO(2) concentration as well as illumination time on the decolorization extents were investigated. Among the processing parameters, the pH of the reaction solution played an important role in tuning the photocatalytic activity of CeO(2). The maximum photodecoloration rate was achieved at basic pH (pH 11). Under the optimum operational conditions, approximately 99.6% dye removal was achieved within 120 min. The observed results indicate that the decolorization of the MB followed a pseudo-first order kinetics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.