Abstract

In our previous study, we have reported the catalytic (photo- and sono-) performance of SnO2 nanoparticles in methylene blue (MB) removal from aqueous solution. In this study, SnO2/nanographene platelets (NGP) composites were fabricated by depositing SnO2 nanoparticle onto nanographene platelets surface to develop photo-, sono-, and sonophotocatalysts, SnO2 nanoparticle, and SnO2/NGP composites were successfully synthesized using the sol-gel and coprecipitation method, respectively. The nanographene platelets (NGP) content was varied from 5, 10, and 15 weight percentages (wt.%). The optical properties and thermal stability of the samples were characterized using X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), and Thermal Gravimetric Analysis (TGA). The catalytic ability of the samples was investigated using photo-, sono-, and sonophoto degradation of MB which was observed when nanographene platelets (NGP) were added into SnO2 nanocomposite. The photo-, sono- and sonophotocatalytic activities of SnO2/NGP composites on dyes were analyzed by measuring the change in absorbance of dyes under UV-spectrophotometer. The degradation of the organic dyes has been calculated by monitoring the degradation in concentration of the dyes before and after irradiation of UV light, ultrasound, and both of them respectively. The influence of other parameters such as catalyst dosage, pH, and scavenger have also been investigated. The results showed that SnO2/NGP composite with 10 weight percent (wt.%) has better catalytic performance than pure SnO2 nanoparticle. The reusability tests have also been done to ensure the stability of the used catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.