Abstract

To solve the problems such as water eutrophication caused by excess phosphorus, the potential residual value of aluminum sludge was fully exploited and its phosphate adsorption capacity was further improved. In this study, twelve metal-modified aluminum sludge materials were prepared by co-precipitation method. Among them, Ce-WTR, La-WTR, Y-WTR, Zr-WTR, and Zn-WTR showed excellent adsorption capacity for phosphate. The adsorption performance of Ce-WTR on phosphate was twice that of the native sludge. The enhanced adsorption mechanism of metal modification on phosphate was investigated. The characterization results showed that the increase in specific surface area after metal modification was 9.64, 7.5, 7.29, 3, and 1.5 times, respectively. The adsorption of phosphate by WTR and Zn-WTR was in the accordance with Langmuir model, while the others were more following the Freundlich model (R2 > 0.991). The effects of dosage, pH, and anion on phosphate adsorption were investigated. The surface hydroxyl groups and metal (hydrogen) oxides played an important role in the adsorption process. The adsorption mechanism involves physical adsorption, electrostatic attraction, ligand exchange, and hydrogen bonding. This study provides new ideas for the resource utilization of aluminum sludge and theoretical support for preparing novel adsorbents for efficient phosphate removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.