Abstract

This paper presents a theoretical study showing the mechanism of light transmission through opaque metallic films perforated with nanocoaxial apertures thanks to the excitation of their cutoff-free TEM (Transverse ElectroMagnetic) guided mode. Full three-dimensional Finite Difference Time Domain (3D-FDTD) together with a Body-Of-Revolution FDTD simulation results are presented and discussed in order to optimize this extraordinary transmission. Very promising findings are pointed out opening the path to the design of new devices for both nano-optic and photovoltaic applications.

Highlights

  • HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not

  • This paper presents a theoretical study showing the mechanism of light transmission through opaque metallic films perforated with nanocoaxial apertures thanks to the excitation of their cutoff-free TEM (Transverse ElectroMagnetic) guided mode

  • The Extraordinary optical transmission (EOT) accounts for the transmission enhancement of the electromagnetic waves through opaque plates perforated with subwavelength apertures

Read more

Summary

Introduction

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. This paper presents a theoretical study showing the mechanism of light transmission through opaque metallic films perforated with nanocoaxial apertures thanks to the excitation of their cutoff-free TEM (Transverse ElectroMagnetic) guided mode.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.