Abstract

The open-circuit voltage (V OC) in organic photovoltaic cells has been shown to depend on a number of parameters including the energy levels of the active materials, active layer structure, illumination intensity, and operating temperature. Here we report, a significant increase in V OC from 0.43 to 0.63 V in zinc phthalocyanine (ZnPc)/C60 planar heterojunction photovoltaic cells operated at room temperature under 1 sun AM1.5G solar illumination, when a home-synthesized and purified ZnPc source materials was used instead of a commercially obtained (and home purified) ZnPc source. While the two ZnPc source materials have nearly identical UV–Vis and IR absorption properties, the home-synthesized ZnPc contains chlorinated derivatives and has half of the electrical defect density (on the order of 1016 cm−3) as compared to the commercial ZnPc. The improved V OC in devices with the home-synthesized ZnPc is contributed from both a lower dark current and a higher magnitude of photocurrent. Additional experiments revealed that the different device characteristics are mostly associated with processes occurring at the ZnPc/C60 interface, which we attribute to nongeminate recombination of charges built-up on either side of the interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.