Abstract

As a new type of nonvolatile memory, the resistive memristor has broad application prospects in information storage and neural computing based on its excellent resistive switching (RS) performance. At present, it is still a great challenge to improve both ferroelectric polarization and leakage current to achieve a high RS on/off ratio of ferroelectric memristors. Herein, epitaxial Pb(Zr0.40Ti0.60)O3 (PZT) thin films with low content Ca doping were deposited on the Nb:SrTiO3 substrate to prepare PCZT/NSTO heterostructures and their RS behaviors were studied. The research findings show that compared with pure PZT film, the ferroelectric polarization of 1-mol%-Ca-doped PZT film is slightly improved, while the leakage current is increased by three orders of magnitude. Therefore, the RS on/off ratio reaches 2.5 × 105, about three orders of magnitude higher than pure PZT films. The theoretical analysis reveals that the RS behavior of PCZT/NSTO heterostructures is controlled by the PCZT/NSTO interfacial barrier and the space charge-limited current mechanism. Our results demonstrate that the ferroelectricity and electricity of ferroelectric thin films can be improved simultaneously by doping low-content Ca ions to increase the RS performance, which provides a good reference for the development of high-performance ferroelectric memristor devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.