Abstract
ObjectivesThis study evaluates the difference in physical and mechanical properties of ZrO2 ceramics, commonly used in dental applications, altered by three different forms of Al2O3 content; microparticles (m), nanoparticles (n), and microfiber (f). MethodsThree different types of ZrO2–Al2O3 composites were formed using microparticle (m), nanoparticle (n), or microfibre (f) forms of Al2O3. The physical and mechanical properties such as sintering shrinkage, relative density, Vickers hardness, fracture toughness, and biaxial strength were evaluated. A Weibull analysis was performed to assess the strength reliability of the specimens. All data were calculated using the t-test and ANOVA. ResultsThe sintering shrinkage and relative density of all ceramic composite groups were decreased with the addition of Al2O3. The mechanical properties of ZrO2–Al2O3 (f) composite were higher than that of ZrO2–Al2O3 (m) composite and ZrO2–Al2O3 (n) composite. The maximum hardness, fracture toughness, and biaxial flexural strength were observed for 10 vol% of Al2O3 fibre. When the content of Al2O3 fibre in the matrix was increased above 20 vol%, agglomeration occurred and resulted in a decrease of hardness and toughness. The Weibull modulus value of the ZrO2–Al2O3 (f) composite was the lowest compared to that of other groups. However, characteristic strength (σ0) of ZrO2–Al2O3 (f) the highest value. SignificanceThe current study demonstrated that the addition of right amount of Al2O3 microfibre into the ZrO2 matrix enhanced the mechanical properties of ZrO2-Al2O3 (f) composite, which would be favourable for dental applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.