Abstract

Petrographic studies of peridotitic xenoliths entrained in late Quaternary basalts from beneath the southern Sierra Nevada have revealed the presence of accessory sulfide minerals along grain boundaries and fractures. Equilibration temperatures from the xenoliths are sufficiently high that the molten sulfides coexist with the basaltic melt. Sulfides are extremely conductive relative to the solid matrix or the basaltic melt, so a small fraction can increase the bulk conductivity of the mantle appreciably. Previous estimates of 2–5% partial melt from magnetotelluric measurements can be plausibly reduced to less than 1%. Such low melt percentages have longer residence times in the mantle and are more consistent with the volumetrically minor late Quaternary basalt flows and the primitive basalt compositions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.