Abstract

In order to improve the magnetocaloric properties of MnNiSi-based alloys, a new type of high-entropy magnetocaloric alloy was constructed. In this work, Mn0.6Ni1−xSi0.62Fe0.4CoxGe0.38 (x = 0.4, 0.45, and 0.5) are found to exhibit magnetostructural first-order phase transitions from high-temperature Ni2In-type phases to low-temperature TiNiSi-type phases so that the alloys can achieve giant magnetocaloric effects. We investigate why chexagonal/ahexagonal (chexa/ahexa) gradually increases upon Co substitution, while phase transition temperature (Ttr) and isothermal magnetic entropy change (ΔSM) tend to gradually decrease. In particular, the x = 0.4 alloy with remarkable magnetocaloric properties is obtained by tuning Co/Ni, which shows a giant entropy change of 48.5 J∙kg−1K−1 at 309 K for 5 T and an adiabatic temperature change (ΔTad) of 8.6 K at 306.5 K. Moreover, the x = 0.55 HEA shows great hardness and compressive strength with values of 552 HV2 and 267 MPa, respectively, indicating that the mechanical properties undergo an effective enhancement. The large ΔSM and ΔTad may enable the MnNiSi-based HEAs to become a potential commercialized magnetocaloric material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.