Abstract

Gold nanoshells (GNs) are new materials that have an optical response dictated by the plasmon resonance. The wavelength at which the resonance occurs depends on the core and shell sizes. The purposes of this study were to use the combination of indocyanine green (ICG) and different concentration of gold nanoshells for skin tissue soldering and also to examine the effect of laser soldering parameters on the properties of repaired skin. Two mixtures of albumin solder and different combinations of ICG and gold nanoshells were prepared. A full thickness incision of 2 × 20 mm(2) was made on the surface and after addition of mixtures it was irradiated by an 810 nm diode laser at different power densities. The changes of tensile strength (σ(t)) due to temperature rise, number of scan (Ns), and scan velocity (Vs) were investigated. The results showed at constant laser power density (I), σ(t) of repaired incisions increases by increasing the concentration of gold nanoshells in solder, Ns, and decreasing Vs. It was demonstrated that laser soldering using combination of ICG + GNs could be practical provided the optothermal properties of the tissue are carefully optimized. Also, the tensile strength of soldered skin is higher than skins that soldered with only ICG or GNs. In our case, this corresponds to σ(t) = 1800 g cm(-2) at I ∼ 47 Wcm(-2), T ∼ 85 [ordinal indicator, masculine]C, Ns = 10, and Vs = 0.3 mms(-1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.