Abstract

Adhesion of carbon nanotube (CNT) onto a cathode substrate is very crucial for field electron emitters that are operating under high electric fields. As a supporting precursor of CNT field emitters, we adopted silicon carbide (SiC) nano-particle fillers with Ni particles and then enhanced interfacial reactions onto Kovar-alloy substrates through the optimized wet pulverization process of SiC aggregates for reliable field electron emitters. As-purchased SiC aggregates were efficiently pulverized from 20 to less than 1 micro-meter in a median value (D50). CNT pastes for field emitters were distinctively formulated by a mixing process of the pulverized SiC aggregates and pre-dispersed CNTs. X-ray photoelectron spectroscopy studies showed that the optimally pulverized SiC-CNT paste-emitter had a stronger Si 2p3/2 signal in the Ni2Si phase than the as-purchased one. The Si 2p3/2 signal would represent interfacial reaction of the SiC nano-particle onto Ni from the CNT paste and the Kovar substrate, forming the supporting layer for CNT emitters. The optimal paste-emitter even in a vacuum-sealed tube exhibited a highly reliable field emission current with a high current density of 100 mA cm−2 for over 50 h along with good reproducibility. The enhanced interfacial reaction of SiC filler onto the metal substrates could lead to highly reliable field electron emitters for vacuum electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.