Abstract

Nanocomposite of hydroxyapatite (HA) surface grafted with L-lactic acid oligomer (LAc oligomer) (op-HA) showed improved interface compatibility, mechanical property, and biocompatibility in our previous study. In this paper, composite scaffolds of op-HA with controlled grafting different amounts of LAc oligomer (1.1, 5.2, and 9.1 wt %) were fabricated and implanted to repair rabbit radius defects. The dispersion of op-HA nanoparticles was more uniform than n-HA in chloroform and nanocomposites scaffold. Calcium and phosphorus exposure, in vitro biomineralization ability, and cell proliferation were much higher in the op-HA1.1 wt %/PLGA scaffolds than the other groups. The osteodifferentiation and bone fusion in animal tests were significantly enhanced for op-HA5.2 wt %/PLGA scaffolds. The results indicated that the grafted LAc oligomer of 5.2 or 9.1 wt %, which formed a barrier layer on the HA surface, prevented the exposure of nucleation sites. The shielded nucleation sites of op-HA particles (5.2 wt %) might be easily exposed as the grafted LAc oligomer was decomposed easily by enzyme systems in vivo. Findings from this study have revealed that grafting 1.1 wt % amount of LAc oligomer on hydroxyapatite could improve in vitro mineralization, and 5.2 wt % could promote in vivo osteogenesis capacity of composite scaffolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.