Abstract

Anaerobic digestion (AD) is a relatively safe and economically feasible disposal technique for waste activated sludge (WAS), in which hydrolysis of complex organic matters is the rate-limiting step. The aim of this study is to explore the efficiency of applying nitrogen gas nanobubble water (N2-NBW) to AD of WAS and reveal the possible mechanisms. The possible effects of N2-NBW on different processes during AD of WAS were investigated and N2-NBW was expected to enhance the hydrolysis step. Results showed that after N2-NBW addition, sludge particles possessed more negative charges (indicated by zeta potential) than the control with deionized water (DW) addition. The total methane production of NBW group was 402 mL/g-VSreduced, 29% higher than the control group. Moreover, mechanism investigations revealed that N2-NBW addition not only improved the disintegration of high molecular weight compounds (proteins and polysaccharides), but also enhanced the activities of four extracellular hydrolases by 14-17%. Results from the present work showed that the enhancement of N2-NBW addition on methane production from AD of WAS was mainly through the augmentation of hydrolysis of WAS, as little effect on methanogenesis and VS reduction was discerned. The promotion effect of N2-NBW on hydrolysis suggests that N2-NBW addition is a promising pretreatment strategy for AD of WAS with no chemical addition at low energy consumption, thus, increasing the economic feasibility of WAS disposal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.