Abstract

The poor high-rate dischargeability (HRD) of negative electrode materials (hydrogen storage alloys) has impeded applications of nickel metal hydride batteries in high-power fields, electric vehicles, hydride electric vehicles, power tools, modern military devices, etc. Here we report a facile and effective strategy to enhance the HRD performance of commercial MmNi3.55Co0.75Mn0.4Al0.3 hydrogen storage alloy (here Mm denotes mischmetals) with high-energy ball milling and addition of graphene nanoplatelets (GNPs). At a discharge current density of 3000 mA g−1, the capacity retention rate of the alloy electrode could reach 53.0% after ball-milling, and 68.3% after further addition of GNPs, which is 3.2 times that of original alloy electrode (21.5%). Such a superior HRD performance is contributed by (1) smaller particle size of alloys to reduce the diffusion distance of hydrogen atoms; (2) high conductivity of GNPs to accelerate the charge transfer; and (3) interconnected GNPs among alloys to decrease the internal resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.