Abstract

The heterogeneous Fenton-like catalyst (Mg,Cu,Ni)(Fe,Al)2O4 was synthesized via a coprecipitation method using laterite nickel ore leaching solution as raw material. The effects of CuCl2·2H2O addition and calcination temperature on the microstructures and degradation properties of the obtained products were investigated. Results showed that higher calcination temperature could promote the migration of Cu2+ ions from CuO to the spinel ferrite lattice and occupied octahedral sites. The degradation efficiencies (η) of various types of low-concentration dyes and tetracycline were higher than 95%, which was mainly due to the accelerated generation of OH radicals by the synergistic effect of Fe3+ and Cu2+ ions in octahedral sites of the formed (Mg,Cu,Ni)(Fe,Al)2O4. Moreover, after five consecutive degradation cycles, the η of RhB was still close to 100%, TOC removal efficiency was maintained around 40% and the concentrations of metallic ions in degraded solutions were all lower than the national effluent discharge standard (GB8978-1996), confirming the as-obtained (Mg,Cu,Ni)(Fe,Al)2O4 was an eco-friendly heterogeneous Fenton-like catalyst with excellent stability and reusability. This study may provide an effective reference for large scale preparing efficient heterogeneous Fenton-like catalysts from natural minerals in treating the wastewater contaminated by refractory organics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.