Abstract
The Fenton reaction is considered to be of great significance in the initial attack of lignocellulose in wood-decaying fungi. Quinone redox cycling is the main way to induce the Fenton reaction in fungi. We show that lytic polysaccharide monooxygenases (LPMOs), through LPMO-catalyzed oxidation of hydroquinone, can efficiently cooperate with glucose dehydrogenase (GDH) to achieve quinone redox cycling. The LPMO/GDH system can enhance Fe3+-reducing activity, H2O2 production, and hydroxyl radical generation, resulting in a fueled Fenton reaction. The system-generated hydroxyl radicals exhibited a strong capacity to decolorize different synthetic dyes and degrade lignin. Our results reveal a potentially critical connection between LPMOs and the Fenton reaction, suggesting that LPMOs could be involved in xenobiotic compound and lignin degradation in fungi. This new role of LPMOs may be exploited for application in biorefineries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.