Abstract

Vascular endothelial growth factor (VEGF), an angiogenic factor induced by hypoxia, also exerts direct effects on neural tissues. VEGF up-regulation after hypoxia coincides with expression of its two tyrosine kinase receptors Flt-1(VEGFR-1) and Flk-1 (KDR/VEGFR-2), which are the key mediators of physiological angiogenesis. We have recently shown that hypoxic-preconditioning (PC) leading to tolerance to hypoxia-ischemia in neonatal piglet brain resulted in increased expression of VEGF. In this study, we used a hypoxic-preconditioning model of ischemic tolerance to analyze the expression and cellular distribution of VEGF receptors and phosphorylation of cAMP-response element-binding protein (CREB) in newborn piglet brain. The response of Flt-1 and Flk-1 mRNA to PC alone was biphasic with peaks early (6h) and late (1week) after PC. The mRNA expression of Flt-1 and Flk-1 in piglets preconditioned 24h prior to hypoxia-ischemia was significantly higher than non-preconditioned piglets and remained up-regulated up to 7days. Furthermore, PC prior to hypoxia-ischemia significantly increased the protein levels of Flt-1 and Flk-1 compared with hypoxia-ischemia in a time-dependent manner. Double-immunolabeling indicated that both Flt-1 and Flk-1 are expressed in neurons and endothelial cells with a similar time course of expression following PC and that PC leads to the growth of new vessels. Finally, our data demonstrate that PC significantly phosphorylated and activated cAMP-response element-binding protein in nucleus. These results suggest that mechanism(s) initiated by PC can induce VEGF receptor up-regulation in newborn brain and that VEGF-VEGF receptor-coupled signal transduction pathways could contribute to the establishment of tolerance following hypoxia-ischemia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.