Abstract

Recent experiments in the study of inertial confinement fusion (ICF) at the National Ignition Facility (NIF) in the United States have reached the so-called alpha-heating regime1–3, in which the self-heating by fusion products becomes dominant, with neutron yields now exceeding 1 × 1016 (ref. 4) However, there are still challenges on the path towards ignition, such as minimization of the drive asymmetry, suppression of laser-plasma instabilities, and mitigation of fabrication features5. In addition, in the current cylindrical-hohlraum indirect drive schemes for ICF, a strong limitation is the inefficient (≤10%) absorption of the laser-produced hohlraum X-rays by the capsule as set by relative capsule-to-hohlraum surface areas. Here we report an experiment demonstrating ~30% energy coupling to an aluminium capsule in a rugby-shaped6, gold hohlraum. This high coupling efficiency can substantially increase the tolerance to residual imperfections and improve the prospects for ignition, both in mainline single-shell hot-spot designs and potential double-shell targets. High coupling efficiency between laser-induced hohlraum X-rays and targets is essential for reaching long-sought regimes for viable inertial confinement fusion. Experiments with a rugby hohlraum shape and an improved capsule now allow demonstration of more than 30%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.