Abstract
Microbial fuel cells (MFCs) can potentially be utilized for power generation, but their low power density and low energy storage capabilities remain major bottlenecks for their large-scale development. In this research, a simplistic nitrogen-doped hierarchically porous carbon material (HPC-A) was developed through a one-step carbonization and activation process and was successfully hot-pressed on the carbon cloth (CC) substrate. This process fabricates capacitive bioanodes (HPC-A-CC) that can enhance electricity generation and storage in MFCs. The as-prepared HPC-A-CC anode delivered a power density of 2043.6 mW·m−2 and a cumulative total charge (Qm) of 426.4 ± 13.4C·m−2 at each cycle, which was 2.1 and 34.8 times higher than that of the plain CC anode, respectively. This was a result of the hierarchical and interconnected porous structure, improved hydrophilic surface, and increased number of active centers which host the bacteria for enhanced electron transfer. Electrochemical measurements indicated the superior electrochemical activity and capacitive behavior of the HPC-A-CC anode. Furthermore, biofilm analysis revealed that the HPC-A-CC biofilm exhibited higher cell viability and a more uniform spatial distribution. These findings not only demonstrate the potential of HPC-A-CC for power enhancement in MFCs but also provide a feasible solution to the problem of power generation and demand mismatch in MFC applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have