Abstract

TiO2-based nanotubes (NTs), nanoparticles (NPs) and composite structural film (50% NP + 50% NT film) were synthesized by sol-gel hydrothermal process. Synthetic indigo dye was used as a sensitizer with the unique combination of electrolyte (EMII + BMII + PMII) and with cobalt sulphide as counter electrode. The structure and morphology of the three films, namely, NP, NT and NPNT is studied through X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The absorption spectra and incident photon-to-current conversion efficiency (IPCE) of the three films were compared and found to be higher for NPNT film. The efficiency and photocatalytic activity of three films were evaluated. The composite structure showed improved efficiency (1.72%) than NP (1%) and NT films (0.78%). The photocatalytic activity of the three films were measured using organic dye, methylene blue under UV light radiation. The composite structure showed higher dye absorption and higher rate of reaction with time. This paper certainly proves that there are many rooms to focus on the photoanode configuration, which plays a key role to improve the efficiency of dye-sensitized solar cell (DSSC).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.