Abstract

Mosses and lichens have been shown to play an important role in enhancing global chemical weathering of the surface rock. However, there are no studies concerning the effects of mosses and lichens on the microbial communities inhabiting rock surfaces. In this study, culture-dependent and culture-independent analyses were employed to compare the diversity, composition, and rock-weathering activity of bacterial communities inhabiting potash trachyte surfaces covered by mosses (MR) and lichens (LR) with those inhabiting surrounding bare rock surfaces (BR). Analyses of 16S rRNA gene Miseq sequencing revealed that the order of alpha (α) diversity indices, in terms of the number of unique operational taxonomic units (OTUs) and Faith's index of phylogenetic diversity, was MR > LR > BR. Moreover, α-diveristy indices were positively correlated with the content of available phosphorus (AP) in rock samples (r = 0.87–0.92), and this explained 70% of the variation in bacterial community structure. The culture-dependent analyses revealed that 100% of the culturable bacterial strains could enhance potash trachyte weathering, and the order of rock-weathering acitivity of bacterial strains was MR > LR > BR. Acidolysis was found to be the major mechanism involved in the bacteria-mediated weathering of potash trachyte. Moreover, bacterial strians related to the genera Dyella and Ralstonia showed the highest rock-weatheirng activity, and both Dyella and Ralstonia were enriched in MR. The results of this study enhance our understanding of the roles of bacteria facilitated by mosses and lichens in rock weathering, element cycling, and soil formation, and provide new insights into the interaction between non-vascular plants and the bacteria on rock surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.