Abstract

A novel thin film composite (TFC) membrane featuring a polyamide bilayer was prepared on a porous polysulfone support using sequential interfacial polymerization. A conventional polyamide membrane prepared using m-phenylenediamine (MPD) in water and trimesoyl chloride (TMC) in hexane via interfacial polymerization was subsequently immersed into an alkaline aqueous solution of a hexafluoroalcohol (HFA)-containing aromatic diamine (HFA-MDA) to form an HFA-substituted aromatic polyamide layer (HFAPA) on the surface of the conventional (or reference) polyamide layer (REFPA). Water contact angle (θw) measurements indicated that the surface of the membrane becomes much more hydrophobic (θw≅140°) after forming the additional HFAPA layer onto REFPA (θw≅78°) although cross-sectional TEM images showed no significant increment in film thickness. The HFAPA-on-REFPA bilayer membrane, which features a more hydrophobic surface than the conventional REFPA membrane, exhibited improved salt rejection (ca. 50% reduction in salt passage) with a small loss in water flux (ca. 8% reduction) compared to the REFPA membrane, resulting in an excellent combination of salt rejection and water flux. Moreover, higher boron rejection was also achieved using the bilayer membrane (HFAPA-on-REFPA) compared to the REFPA membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.