Abstract

Ceramic–polymer paste-injection molding is demonstrated as a facile fabrication route for barium hexaferrite magnets. Interestingly, these low-density (1.90–2.35 g/cm3) magnets exhibit substantial coercivity of 3868–4002 Oe. When ceramic paste without polymeric additives is used, reduced coercivity and slightly increased magnetizations are obtained from a magnet with the density of 2.55 g/cm3. Their magnetizations are also higher than those obtained from compactions of sol–gel-derived powders. For compact magnets (3.46–3.77 g/cm3), the DI water addition results in a slightly higher magnetization but lower coercivity than dry-pressed magnets. Compactions into disk and bar magnets give rise to comparable magnetic properties. The morphological characterizations reveal smaller barium hexaferrite particles leading to larger coercivity, and the density and shape of magnets have a less pronounced effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.