Abstract
Laboratory investigations were conducted to demonstrate a potentially transformative, cost-efficient per- and polyfluoroalkyl substances (PFAS) treatment approach, consisting of enhanced coagulation and repeated ion exchange (IX)-advanced reduction process (ARP) for concurrent PFAS removal and IX resin regeneration. Enhanced alum coagulation at the optimal conditions (pH6.0, 60 mg/L alum) could preferentially remove high molecular-weight, hydrophobic natural organic matter (NOM) from 5.0- to ~1.2-mg/L DOC in simulated natural water. This facilitated subsequent IX adsorption of perfluorooctanoic acid (PFOA, a model PFAS in this study) (20 μg/L) using IRA67 resin by minimizing the competition of NOM for functional sites on the resin. The PFOA/NOM-laden resin was then treated by ARP, generating hydrated electrons (eaq - ) that effectively degraded PFOA. The combined IX-ARP regeneration process was applied over six cycles to treat PFOA in pre-coagulated simulated natural water, nearly doubling the PFOA removal compared with the control group without ARP regeneration. This study underscores the potential of enhanced coagulation coupled with cyclic IX-ARP regeneration as a promising, cost-effective solution for addressing PFOA pollution in water. PRACTITIONER POINTS: Enhanced alum coagulation can substantially mitigate NOM to favor the following IX removal of PFOA in water. Cyclic IX adsorption-ARP regeneration offers an effective, potentially economical solution to the PFOA pollution in water. ARP can effectively degrade PFOA during the ARP regeneration of PFOA/NOM-laden resin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.