Abstract

The excessive release of greenhouse gases, especially carbon dioxide (CO2) pollution, has resulted in significant environmental problems all over the world. CO2 capture technologies offer a very effective means of combating global warming, climate change, and promoting sustainable economic growth. In this work, UiO-66-NH2 was synthesized by the novel sonochemical method in only one hour. This material was characterized through PXRD, FT-IR, FE-SEM, EDX, BET, and TGA methods. The CO2 capture potential of the presented material was investigated through the analysis of gas isotherms under varying pressure conditions, encompassing both low and high-pressure regions. Remarkably, this adsorbent manifested a notable augmentation in CO2 adsorption capacity (3.2 mmol/g), achieving an approximate enhancement of 0.9 mmol/g, when compared to conventional solvothermal techniques (2.3 mmol/g) at 25 °C and 1 bar. To accurately represent the experimental findings, three isotherm, and kinetic models were used to fit the experimental data in which the Langmuir model and the Elovich model exhibited the best fit with R2 values of 0.999 and 0.981, respectively. Isosteric heat evaluation showed values higher than 80 kJ/mol which indicates chemisorption between the adsorbent surface and the adsorbate. Furthermore, the selectivity of the adsorbent was examined using the Ideal Adsorbed Solution Theory (IAST), which showed a high value of 202 towards CO2 adsorption under simulated flue gas conditions. To evaluate the durability and performance of the material over consecutive adsorption–desorption processes, cyclic tests were conducted. Interestingly, these tests demonstrated only 0.6 mmol/g capacity decrease for sonochemical UiO-66-NH2 throughout 8 consecutive cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.