Abstract

Spectral reconstruction from RGB images has made significant progress. Previous works usually utilized the noise-free RGB images as input to reconstruct the corresponding hyperspectral images (HSIs). However, due to instrumental limitation or atmospheric interference, it is inevitable to suffer from noise (e.g., Gaussian noise) in the actual image acquisition process, which further increases the difficulty of spectral reconstruction. In this paper, we propose an enhanced channel attention network (ECANet) to learn a nonlinear mapping from noisy RGB images to clean HSIs. The backbone of our proposed ECANet is stacked with multiple enhanced channel attention (ECA) blocks. The ECA block is the dual residual version of channel attention block, which makes the network focus on key auxiliary information and features that are more conducive to spectral reconstruction. For the case that the input RGB images are disturbed by Gaussian noise, cross-layer feature fusion (CLFF) unit is used to concatenate the multiple feature maps at different depths for more powerful feature representations. In addition, we design a novel combined loss function as the constraint of the ECANet to achieve more accurate reconstruction result. Experimental results on two HSI benchmarks, CAVE and NTIRE 2020, demonstrate that the effectiveness of our method in terms of both visual and quantitative over other state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.