Abstract

As a result of the increase in industrial activities and the extensive use of automobiles, air pollutants, especially carbon monoxide, reach the alarm level. The removal of carbon monoxide through oxidation is still one of the best tactics so far. Therefore, looking for an active and durable catalyst is considered the key factor for improving the oxidation process. In this work, Pd nanoparticles (1.0, 3.0 and 5.0 wt.%) were supported onto reduced graphene oxide / copper metal organic framework nanocomposite (rGO@Cu-BTC) through one pot solvothermal synthesis method. The catalysts were thoroughly characterized by state-of-the-art techniques such as XPS, SEM, TEM, XRD, N2 physisorption, and FT-IR. The results revealed that the Pd nanoparticles were exceptionally dispersed on rGO@Cu-BTC nanocomposite surface and the Cu-BTC crystals showed excellent octahedral structure with smooth edges as indicated SEM images. The results revealed that 3.0 wt. % Pd/rGO@Cu-BTC acts as an excellent catalyst in the CO oxidation as indicated by T50 and T100 values of 71 and 82 °C, respectively. Additionally, the results showed that rGO has a vital role in the dispersion of Pd NPs on the catalyst surface as well as the presence of surface oxygen groups, which yields higher catalytic activity compared with the catalyst without rGO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.