Abstract
By substituting 10wt.% of conventional graphite particles, pitch coke particles with fine mosaics demonstrate superior performance in enhancing the braking properties of copper metal matrix composites (CMMCs) operating at various conditions. When mated with C/C-SiC, the coefficient of friction increases by 18.6% at low speeds and 38.8% at high braking speeds, along with a significant enhancement in wear resistance across various counterparts. This improvement is attributed to the incorporation of pitch coke with fine mosaics and superior mechanical properties, which not only imparts high thermal capacity and mechanical strength to the CMMCs but also fosters a synergistic interaction between pitch coke and the iron oxide layer, stabilizing the friction layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.