Abstract

A bio-barcode immunoassay based on droplet digital polymerase chain reaction (ddPCR) was developed to simultaneously quantify triazophos, parathion, and chlorpyrifos in apple, cucumber, cabbage, and pear. Three gold nanoparticle (AuNP) probes and magnetic nanoparticle (MNP) probes were prepared, binding through their antibodies with the three pesticides in the same tube. Three groups of primers, probes, templates, and three antibodies were designed to ensure the specificity of the method. Under the optimal conditions, the detection limits (expressed as IC10) of triazophos, parathion, and chlorpyrifos were 0.22, 0.45, and 4.49 ng mL-1, respectively. The linear ranges were 0.01-20, 0.1-100, and 0.1-500 ng mL-1, and the correlation coefficients (R2) were 0.9661, 0.9834, and 0.9612, respectively. The recoveries and relative standard deviations (RSDs) were in the ranges of 75.5-98.9 and 8.3-16.7%. This study provides the first insights into the ddPCR for the determination of organophosphate pesticides. It also laid the foundation for high-throughput detection of other small molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.