Abstract

Serotonin (5-HT) modulates motoneuron excitability during muscle contractions, where the release of 5-HT in the central nervous system (CNS) is linked to the intensity of physical activity. Although there is evidence that enhanced availability of 5-HT can exacerbate fatigue, these effects on the development of fatigue during different contraction intensities are largely unknown. The purpose of this study was to investigate how enhanced 5-HT availability affects voluntary muscle activation and corticospinal excitability during fatigue-inducing contractions. Two experiments were performed. In the first experiment (n = 11), 12 isometric elbow flexions at 20% maximal voluntary contractions (MVCs) were performed for 2 min each with 40-s rest periods. In the second experiment (n = 14), 12 maximal isometric elbow flexions were held for 10 s each with 40-s rest periods. In both experiments, the selective serotonin reuptake inhibitor (20-mg paroxetine), or a placebo, was administered in a two-way crossover design. Muscle responses to transcranial magnetic stimulation (TMS) of the motor cortex (both experiments 1 and 2), as well as motor point stimulation of the elbow flexors (experiment 2) were assessed. Paroxetine reduced both motor cortical (P = 0.018) and motor point voluntary activation (P = 0.036) during the maximal contraction protocol. Paroxetine also reduced exercise-induced lengthening of the TMS silent period during the submaximal (P = 0.037) and maximal (P = 0.002) contraction protocols. Activation of inhibitory 5-HT1A receptors on motoneurons likely exacerbated exercise-induced reductions in voluntary drive to the elbow flexors. However, 5-HT modulation of motor activity also appeared at the supraspinal level.NEW & NOTEWORTHY As serotonin release onto motoneurons may be scaled to the strength of muscle contraction, it may have different effects when neuromuscular fatigue is induced by contractions of different intensities. Enhanced levels of serotonin compromised voluntary activation of muscle when fatigue was induced by strong contractions but not weak contractions. This provides evidence that the serotonergic system has the greatest influence on fatigue that is generated with high neural drive to the target muscle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.