Abstract

Herein, a ternary TiO2/MIL-88A(Fe)/g-C3N4 heterojunction is successfully constructed through a facile hydrothermal strategy for enhancing solar energy harvesting and efficiency of catalytic nitrogen reduction induced by enlarged light absorption range, increasing interfacial charge transfer ability and desirable stability. Under the simulated sunlight irradiation, the N2 fixation experiment shows that the yield of NH3 reaches 1084.31 μmol/(g·h) over the TiO2/MIL-88A(Fe)/g-C3N4 photocatalyst, and the yield is significantly enhanced, which is 33.68 and 13.94 times that is higher than the pure TiO2 and g-C3N4, respectively. In a mean time, the excellent performance of the photocatalytic N2 fixation over the ternary TiO2/MIL-88A(Fe)/g-C3N4 is verified based on density function theory calculation and the decisive step over the composite is investigated by calculating Gibbs free energies of nitrogen reduction paths. The performance enhancement mechanism of TiO2/MIL-88A(Fe)/g-C3N4 is speculated, which indicates that the hybridized three-component system presents a desirable Z-scheme band alignment, resulting in the improvement of separation and transfer efficiency of photoinduced charge carriers. The article shows a new and high-efficiency TiO2/MIL-88A(Fe)/g-C3N4 photocatalysis for excellent nitrogen reduction ability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.