Abstract

Humic substances acting as an electron shuttle and nitrogen transformation process influence remarkably the electron transfer in anaerobic reaction systems and thus may affect the reductive dechlorination of hexachlorobenzene (HCB). In order to develop an efficient agricultural strategy for the remediation of organochlorine-contaminated soils, a batch incubation experiment was conducted to study the effects of humic acid, urea, and their interaction on the reductive dechlorination of HCB in a Hydragric Acrisol with high iron oxide content. After 44 d of anaerobic incubation, the five treatments, sterile control, control, humic acid, urea, and humic acid + urea decreased HCB residues by 28.8%, 47.8%, 64.7%, 57.8%, and 71.3%, respectively. The amendment of humic acid or urea significantly decreased soil Eh values and accelerated Fe(III) reduction to Fe(II), thus promoting markedly reductive dechlorination of HCB. Humic acid had a larger dechlorination effect than urea. Since there was a synergistic interaction between humic acid and urea that accelerated HCB dechlorination, the treatment having both amendments together was the most efficient for HCB dechlorination. The results showed that the combination of NH4+-N supplied by a fertilizer and humic substance is a feasible strategy for the remediation of organochlorine-contaminated soils with abundant iron oxide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.