Abstract
The incidence of root rot diseases partly contribute to the currently observed low percentage increase in the yield of cassava. We estimated gene diversities and identified putative hybridizing parents for root rot resistance using 18 simple sequence repeats loci in 43 improved genotypes of cassava. Root rot was measured over 2 years as the percentage proportion of rotten roots to the total number of roots harvested at 12 month after planting. Estimated rot ranged from 1.2 to 21.2% with a mean of 5.7±0.5. Rank-sum analysis generated 8 rot classes and identified TMS 96/1089A as best genotype resistant to root rot. Gene diversity analysis revealed expected heterozygosity that ranged from 0.701 for very highly susceptible genotypes to 0.781 for moderately resistant and susceptible. Genetic differentiation ranged from -0.0178 (resistant and susceptible) to 0.0523 (very highly resistant and highly resistant genotypes). A total heterozygosity of 0.764 was estimated and was largely due to within class diversity (0.755). DNA analysis representatives for window (DARwin) identified 10 hybridizing groups with a dissimilarity coefficient that ranged from 0.18 to 0.81 on a mean of 0.60. The results obtained from the present study are useful for the genetic improvement of cassava against root rot disease. Key words: Cassava genotypes, gene diversity, heterozygosity, resistant genotypes, root rot disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biotechnology and Molecular Biology Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.