Abstract
Real-time collision detection in dynamic scenarios is a hard task if the algorithms used are based on conventional techniques of computer vision, since these are computationally complex and, consequently, time-consuming. On the other hand, bio-inspired visual sensors are suitable candidates for mobile robot navigation in unknown environments, due to their computational simplicity. The Lobula Giant Movement Detector (LGMD) neuron, located in the locust optic lobe, responds selectively to approaching objects. This neuron has been used to develop bio-inspired neural networks for collision avoidance. In this work, we propose a new LGMD model based on two previous models, in order to improve over them by incorporating other algorithms. To assess the real-time properties of the proposed model, it was applied to a real robot. Results shown that the LGMD neuron model can robustly support collision avoidance in complex visual scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.