Abstract

AbstractWe have obtained common offset, common midpoint (CMP) and borehole vertical (VRP) ground-penetrating radar profiles close to the margin of Falljökull, a small, steep temperate valley glacier situated in southeast Iceland. Velocity analysis of CMP and VRP surveys provided a four-layered velocity model. This model was verified by comparison between the depths of englacial reflectors and water channels seen in borehole video, and from the depths of boreholes drilled to the bed. In the absence of sediment within the glacier ice, radar velocity is inversely proportional to water content. Using mixture models developed by Paren and Looyenga, the variation of water content with depth was determined from the radar velocity profile. At the glacier surface the calculated water content is 0.23–0.34% (velocity 0.166 m ns−1), which rises sharply to 3.0–4.1% (velocity 0.149 m ns−1) at 28 m depth, interpreted to be the level of the piezometric surface. Below the piezometric surface the water content drops slowly to 2.4–3.3% (velocity 0.152 m ns−1) until ∼102 m depth where it falls to 0.09–0.14% (velocity 0.167 m ns−1). The water content of the ice then remains low to the glacier bed at about 112 m. These results suggest storage of a substantial volume of water within the glacier ice, which has significant implications for glacier hydrology, ice rheology and interpretations of both radar and seismic surveys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.