Abstract

Microbial metabolic engineering provides a feasible approach to sustainably produce advanced biofuels and biochemicals from renewable feedstocks. Methanol is an ideal feedstock since it can be massively produced from CO2 through green energy, such as solar energy. However, engineering microbes to transform methanol and overproduce chemicals is challenging. Notably, the microbial production of isoprenoids from methanol is still rarely reported. Here, we extensively engineered Pichia pastoris (syn. Komagataella phaffii) for the overproduction of sesquiterpene α-bisabolene from sole methanol by optimizing the mevalonate pathway and peroxisomal compartmentalization. Furthermore, through label-free quantification (LFQ) proteomic analysis of the engineered strains, we identified the key bottlenecks in the peroxisomal targeting pathway, and overexpressing the limiting enzyme EfmvaE significantly improved α-bisabolene production to 212 mg/L with the peroxisomal pathway. The engineered strain LH122 with the optimized peroxisomal pathway produced 1.1 g/L α-bisabolene under fed-batch fermentation in shake flasks, achieving a 69% increase over that of the cytosolic pathway. This study provides a viable approach for overproducing isoprenoid from sole methanol in engineered yeast cell factories and shows that proteomic analysis can help optimize the organelle compartmentalized pathways to enhance chemical production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.